Sugar kills good cholesterol,

sugar

sugar

Scientists at the University of Warwick have discovered that ‘good’ cholesterol is turned ‘bad’ by a sugar-derived substance.

The substance, methylglyoxal – MG, was found to damage ‘good’ HDL cholesterol, which removes excess levels of bad cholesterol from the body.

Low levels of HDL, High Density Lipoprotein, are closely linked to heart disease, with increased levels of MG being common in the elderly and those with diabetes or kidney problems.

Supported by funding from the British Heart Foundation (BHF) and published in Nutrition and Diabetes, the researchers discovered that MG destabilises HDL and causes it to lose the properties which protect against heart disease.

HDL damaged by MG is rapidly cleared from the blood, reducing its HDL content, or remains in plasma having lost its beneficial function.

Lead researcher Dr Naila Rabbani, of the Warwick Medical School, says that: “MG damage to HDL is a new and likely important cause of low and dysfunctional HDL, and could count for up to a 10% risk of heart disease”.

There are currently no drugs that can reverse low levels of HDL, but the Warwick researchers argue that by discovering how MG damages HDL has provided new potential strategies for reducing MG levels.

Commenting on the research’s implications Dr Rabbani said:

“By understanding how MG damages HDL we can now focus on developing drugs that reduce the concentration of MG in the blood, but it not only be drugs that can help.

“We could now develop new food supplements that decrease MG by increasing the amount of a protein called glyoxalase 1, or Glo 1, which converts MG to harmless substances.

“This means that in future we have both new drugs and new foods that can help prevent and correct low HDL, all through the control of MG.”

A potentially damaging substance, MG is formed from glucose in the body. It is 40,000 times more reactive than glucose it damages arginine residue (amino acid) in HDL at functionally important site causing the particle to become unstable.

Glo1 converts MG to harmless substances and protects us. MG levels are normally kept low in the body to maintain good health but they slowly increase with ageing as Glo1 slowly becomes worn out and is only slowly replaced.

Dr Rabbani says: “We call abnormally high levels of MG ‘dicarbonyl stress’. This occurs in some diseases – particularly diabetes, kidney dialysis, heart disease and obesity. We need sufficient Glo1 to keep MG low and keep us in good health.”

Source:   eurekalert.org

Aspartame proven to cause brain damage

Aspartame Damages The Brain at Any Dose

Aspartame Damages The Brain at Any Dose

Did you know that Aspartame has been proven to cause brain damage by leaving traces of Methanol in the blood? It makes you wonder why Aspartame has been approved as “safe” and is found in thousands of food products. Currently more than 90 countries have given the artificial sweetener the “OK” to be used in foods.

“Multiple Sclerosis is often misdiagnosed, and that it could be aspartame poisoning” 

Given that Aspartame is 200 times sweeter than sugar, manufacturers are able to produce their sweet foods and market them as “low calorie” so they can market and appeal to millions of people on “diets.” There is no doubt that the less sugar you have in your diet, the better. But replacing sugar with aspartame is not the solution, and in fact is likely to be even worse for your health.

In my personal experience, Aspartame has always made my head feel very odd when I consumed it. Headaches, light headedness and overall nausea, are all symptoms I personally feel from consuming Aspartame. But that isn’t even the bad part when you look at what all of the research is suggesting. So I question, and everyone should be asking the same: With all of the research about Aspartame and its dangerous effects, even in small quantities, why is it still approved by the FDA and other health agencies as being safe for human consumption? There are better solutions available and with less danger and side effects.

 

Source:  w.collective-evolution.com

Type 2 diabetes genes and metabolic markers

Type 2 diabetes: New associations identified between genes and metabolic markers:

diabetes-graphic

 

 

 

 

In two comprehensive studies, scientists from Helmholtz Zentrum Muenchen, Ludwig-Maximilians-Universitaet Muenchen and Technische Universitaet Muenchen discovered new associations of two major Type 2 diabetes risk genotypes and altered plasma concentrations of metabolic products. The “Virtual Institute Diabetes” joint research cooperation is thereby making an important contribution towards explaining the genetic and molecular basis of diabetes, The results have been published in the journals PLOS ONE and Metabolomics.

For these investigations, participants of the population-based cohort study KORA* carrying high-risk diabetes gene variants without having a diagnosed diabetes, as well as participants without an increased diabetes risk were recruited.

All study participants were subjected to a metabolic load. The nutritients, particularly sugars and fats, were administered either orally or intravenously. The scientists subsequently determined the concentrations of 163 metabolic products in blood samples from the participants. The teams headed by Prof. Dr. Thomas Illig (HMGU) and Dr. Harald Grallert (HMGU), Prof. Dr. Jochen Seißler (LMU), and Prof. Dr. Hans Hauner (TUM) and Dr. Helmut Laumen (TUM) were the first to supply a comprehensive characterisation of the metabolic performance in regard to the respective genotype.

It was observed that the concentrations of the recorded substances represent a particular metabolomic response pattern depending on the genotype. It was possible to verify specific metabolic effects, particularly for the TCF7L2 genotype, which is associated with an increased risk of type 2 diabetes. “We are aware of certain high-risk gene variants for type 2 diabetes. However, the causative mechanisms on the path to this disease are still largely unknown. With our results, we are helping to close the gap between disease-associated genes on the one hand and the development of diabetes on the other. A typically changed metabolic performance can supply early indications of diabetes”, explain Simone Wahl from HMGU and Cornelia Then from LMU, first authors of the two publications.

The scientists are currently investigating metabolic responses in additional genotypes. The objective is to advance the fundamental research on the widespread disease diabetes and to contribute the acquired knowledge to the clinical cooperation groups that have developed from the VID in order to promote the knowledge transfer between the laboratory and clinical care of patients suffering from diabetes.