Brains communicate from thousands of miles away

Brain study

Brain study

 

Brain-to-brain communication study conducted in coordination with Harvard Medical School has proven that extrasensory mind-to mind interaction can happen over great distances by leveraging different pathways in the mind. (Technological telepathy)

The study, coauthored by Alvaro Pascual-Leone, Director of the Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center (BIDMC) and a Professor of Neurology at Harvard Medical School, found that information can be successfully transmitted between two intact human brains from distances over 5000 miles apart.

The following is excerpt from an article featured on Smithsonian Mag:

An international research team develops a way to say “hello” with your mind

In a recent experiment, a person in India said “hola” and “ciao” to three other people in France. Today, the Web, smartphones and international calling might make that not seem like an impressive feat, but it was. The greetings were not spoken, typed or texted. The communication in question happened between the brains of a set of study subjects, marking one of the first instances of brain-to-brain communication on record.

The team, whose members come from Barcelona-based research institute Starlab, French firm Axilum Robotics and Harvard Medical School, published its findings earlier this month in the journal PLOS One. Study co-author Alvaro Pascual-Leone, director of the Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center and a neurology professor at Harvard Medical School, hopes this and forthcoming research in the field will one day provide a new communication pathway for patients who might not be able to speak.

“We want to improve the ways people can communicate in the face of limitations—those who might not be able to speak or have sensory impairments,” he says. “Can we work around those limitations and communicate with another person or a computer?”

Pascual-Leone’s experiment was successful—the correspondents neither spoke, nor typed, nor even looked at one another. But he freely concedes that the test was more a proof of concept than anything else, and the technique still has a long way to go. “It’s still very, very early,” he says, “[but] we can show that this is even possible with technology that’s available. It’s the difference between talking on the phone and sending Morse code. To get where we’re going, you need certain steps to be taken first.”

Indeed, the process was drawn out, if not downright inelegant. First, the team had to establish binary-code equivalents of letters; for example “h” is “0-0-1-1-1.” Then, with EEG (electroencephalography) sensors attached to the scalp, the sender moved either his hands or feet to indicate a 1 or a 0. The code then passed to the recipient over email. On the other end, the receiver was blindfolded with a transcranial magnetic stimulation (TMS) system on his head. (TMS is a non-invasive method of stimulating neurons in the brain; it’s most commonly used to treat depression.) The TMS headset stimulated the recipient’s brain, causing him to see quick flashes of light. A flash was equivalent to a “1” and a blank was a “0.” From there, the code was translated back into text.

 

Source:   earthweareone.com

Share Your Thoughts

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s